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Autonomous Forms and Exact Solutions of Equations
of Motion of Polytropic Gas

E. M. E. Zayed! and Hassan A. ZedaR*>

Received July 27, 2000

The system of motion of a polytropic gas can be reduced to an autonomous form by
using group analysis. A new family of exact solutions are constructed.

1. INTRODUCTION

In this paper, we look for invariant solutions that are particular exact so-
lutions arising from symmetries of the equations of motion of a polytropic gas
and characterized by means of the group analysis approach (see Olver, 1968;
Ovsiannikov, 1982; Sedove, 1959). It has been shown (see Donato and Oliveri,
1993) that the nonautonomous first-order nonlinear partial differential equations
admitting at least two one-parameter Lie groups of transformations with commut-
ing infinitesimal operators (see Amesal,, 1989; Donato, 1992) can be written in
an autonomous form by a suitable use of the canonical variables. With reference
to Donato and Oliveri (1993), it has been shown that the procedure can be applied
to any kind of partial differential equations of any order if some suitable condi-
tions are satisfied. Of course, one can also start from a system in the autonomous
form admitting only trivial constant solutions, and by using appropriate canonical
variables, one can transform it to a system that has nontrivial constant solutions
that, in fact, are nonconstant in original variables. By using this procedure, we are
able to build up new solutions of the equations of motion of a polytropic gas.

By considering Refs. (Doyle, 1999; Feinsilvetral,, 2000; Grigorycwet al,,

1999; Manganaro and Oliveri, 1989; Oliveri and Paola, 1999; Petrs, 1993), we see
that in two dimensions, the equations governing the unsteady flow of a polylropic
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gas are given by

pt + Upx + vpy + p(Ux + vy) =0

Uy + Uy, +vuy + (1/p)px =0

Ve + Uy, +vvy + (1/0)py =0

Pt + Up + vpy + ypux =0, (1.1)

wherep is the densityp the pressura) andv the velocity components in the
andy directions, respectively, and the adiabatic ingieis the ratio of the specific
heats, generally a constant between 1 §nd

2. DETERMINATION OF LIE GROUPS

Classical Lie group theory is used to determine the classical symmetries of the
system (1.1). The analysis was performed using the symmetry-finding software
package DIMSYM (Sherring, 1993) making use of the symbolic manipulation
package REDUCE (Hearn, 1991). The classical symmetries of the system (1.1)
are given as follows:

X1 = d;
Xo = 0y;
X3 = dy;
X4 =10y + 0y;
X5 = tdy + dy;

Xo = td + Xdy + yay;

X7 = 2ty + X0y + Yoy — Udy — v, + 2p0,;

Xg = Yox — Xdy + voy — Udy;

Xg = —Ydy + Xdy — vdy + Ud,;

X10 = p0, + Pdp. (2.1)

Under the operation of commutationi|, X;] = Xi X; — Xj X;, we can derive
the following four cases:

Casel. In this case, we can easily verify that the operatd§gsand Xip
commute withX7, that is,

[Xe, X71=0 and [Xio, X7] = O. 2.2)
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Consequently, we write
[X7, X6 + kX30] =0, (2.3)

wherek is an arbitrary constant.
Upon following two infinitesimal operators related to the system (1.1)

E1 = X7 =23 + X0x + Yoy — Udy — vd, + 200,
E, = X6~|—kX10=t8t —|—x8x+y8y+kp8p+kp8p. (24)

In order to write the system (1.1) in the autonomous form, we choose a suitable
condition by introducing the following canonical variables:

E;T =1, E.U=0, E1Py =0,
Ei£ =0 E;R=0,
E177 = O, E]_H =0. (25)

Thus, the infinitesimal operatdg; is converted to a translation i with these
canonical variables. That is,
~ 0
E;=—.
LTAT

By integrating the system (2.5), one can see that a possible choice of the canonical
variables leads to

(2.6)

1
T=§|nt, \):RX_]',

£ =xt"Y?2, p=Hx%

n=yt? p="P

u=Ux1, (2.7)
In terms of the transformation of variables, we are able to write the system (1.1)
in the form

vV -V .V
L AV)— +B(V)— =0, 2.8
8T+()8§+()8r/ (2.8)

where

H UHO O RO H 0
U ~ 0 U 0 H! OR O O
V=Ir| AM)=109 ou o |' BM=|g 0 R H?
Py 0P 0O U 0 0 yP, R
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The infinitesimal operatoE, can be written in terms of the canonical variables
and takes the following form:

9
E, T— P9 ik kp 2.9
+Eas+” NPT IR OBP (2.9)

Now, we can investigate new canonical variable§, H, Py, U, R, andsjrelated
to the operatoE; and defined by

E,T =1, E;U=0, E;Pg=0,
Exf =0, E;R=0,
E,j=0, E,H=0. (2.10)
Consequently, we get the new transformation of variables in the form
T=InT, Py=PTK
E=¢T% U=UT%0),
=T R=R(T¢n),
H=HTK (2.11)

Finally, we obtain the following system in the autonomous form

w w
0 W _o, (2.12)
oT on
where
H Uu H 0 0 7
§] = o U o H"
wW=| x|, AW)= - ,
RV AM=10 0 0 0
Po 0 yPo 0 U |
RO H 0]
Bow) = OR 0 O
“|loo R A
0 0 yPo R |

3. SOME CLASSES OF PARTICULAR SOLUTIONS

Utilizing the preceding results we can find that the system (1.1) is converted
to the system (2.12) by the following transformation, which is obtained by joining



Autonomous Forms and Exact Solutions of Equations of Motion of Polytropic Gas 1187
(2.7) and (2.11):
Fomn|imT =P 1InTk
- 2 ’ p= pO 2 ’
. 1 -1
£ = (xtl/z)[é In T} , u=Ux7"4
1 -1
7= (yt‘l/z)[é In T} . v=Rx1

~ .l K
o= HXZ[EInT}. (3.1)
In order to build up a particular solution, by inspection, we select a suitable as-
sumption to distinguish various cases.
k=0, W=W(), U=0

Returning to the system (2.12), and taking into consideration (3.1), we obtain the
system

[RH] =0,
T
RR+H "py=0,
yPoR + Ry =0, (3.2)
where the prime’) denotes)/d7. This system leads to the solution
U=0,
R V2
(v +1)B’
- yZ
p = 1
T +D
2
H = (1+y)B '
yZ

whereB andZ are nonzero constants.
Going back to the system (3.1), we see that the corresponding solutions are

given by
V= —yZ x 1
(y +1)B
2
S O e L S
(r+1) yZ

u=0,

p
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(1) W =W(T) orW = W()

In this case we can easily verify that the solutionsWiorR, P, andH have the
forms

C
I

Z.
B.

I

0,
Q,

The corresponding solutions are
u=0, v= Qx4
p=Bx% p=2Z
whereB, Q, andZ are constants.

Case2. We investigate another class of solutions by using another represen-
tation of canonical variables which leads to

1 —1
T = E |nt, V= Ry ’
£=xt"12  p=Hy?
n=yt "2 p="Py(T,&n)
u=Uuy? (3.3)

This represents a transformation of variables allowing to write the system (1.1)
in the same form (2.8). Moreover, let us introduce the infinitesimal opeEgtor
related to the canonical variables (3.3) in the form
a
E, T— — — +kH— + kPy— 3.4
+§ 3 +1 + on T kP Py’ (3.4)

Then the new canonical variables joining to the oper&gpcan be expressed as
follows:

E,T=1, ExU=0, E,Py=0,

Exf =0, E,R=0,

E2ii=0, EH =0, (3.5)
whereupon, it is possible to obtain the new transformation of variables

T=InT, Py=PyTkK

§=ET711 U ZU(-F!g!ﬁ):

i=nT% R=R(T,E ),

H=HTX (3.6)

Consequently, the autonomous formis obtained and has the same expression (2.12).
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4. CLASS OF PARTICULAR SOLUTIONS
In order to find the solution in this case the general canonical variables have
the following form

. 1 ~ 1 ¢

Tzln[élnt}, p=P0[§Int] ,

. 1 -1

£ = (xt‘1/2)|:§ Int] , u=Uy?%
1 -1 ~

i = (yt‘”)[é InT] ., v=Ry?,

p:HWquf (4.1)
2

It follows from the inspection choice that
k=0, WwW=w@E, R

Hence system (2.12) becomes

0.

[UH] =0,
00 + A p, =0,
yBoU +Upy =0, (4.2)

where the prime’f denotes/dé.
Exact solution for the system (4.2) can be obtained by some calculations as

follows:

R=0,
~ yZ
U= ———,
(y+1)B
B, = VA
T+
2
yZ
In terms of the original variables, we obtain
yZ 1
= 01 U= ———F—- ’
b »+1B”
z (y +1)B?
p= =2 Ty

e
(r +1) yZ
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Case3. In this case, we observe that both and X, commute withXg, that is,
[Xe, X7] =0 and [Xg, X4] = 0.
Consequently, we write
[Xe, X7+ k X4] =0.

Thus, we can see th&t; and E; are two infinitesimal operators admitted by the
system (1.1) as the following:

E1 = X7 +kXg = 2t3; + (Kt + X)3x + ydy + (k — U)dy — vd, + 208,
Ez = Xe = td; + Xox + ydy.

The canonical variables, &, n, U, R, H, and Py in terms of the operatdg; are
given by

E;T=1 EU=0, EiP =0,
E:£ =0, E;R=0,
Eln = O, ElH =0. (43)

By integrating the system (4.3) one can see that a possible choice of the canonical
variables leads to

Tzélnt, u=k—-Uy?,

£ = [k +x]t7%, v=Ry",

n=ytt p=Hy?

p=P. (4.4)

We note that this representation allows us to write the system (1.1) in the same
form (2.8). Moreover, in terms of the canonical variables (4.3), the infinitesimal
operatorE, assumes the form

Ex = Tor + &0 + no,.

Now, the new canonical variables are in the form

T=InT, Py = Po(T, €, 7),
E=¢T7H U =U(T, &),
=774, R=R(T,¢, ),

7
H = H(T,E 7), (4.5)
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and
E,T=1, E,U=0, E,Py=0,

E.e =0, E,R=0,
E,j=0, E,H=0.

Finally, we obtain the same form (2.12).

5. SOME CLASSES OF PARTICULAR SOLUTIONS
We work on the transformation which are obtained from the systems (4.4)

and (4.5) of the form

~ 1
T=1In Elnt, p = Po,

-1
5:[ke2t+x]t‘l/2[%lnt} , u=k—-Uy™?

1 -1 -
0= (yt‘”z)[é In T] : v=Ry™,

o= Hy> (5.1)

We discuss some patrticular solutions as
(i) If k # 0, W = W(E), R = 0.
After some calculations, we get

R=0,

g _r%
(y +1)B

~ z

Po=—2.
(y+1)

- @ B2

g o @+7)B°

yZ
The corresponding solutions of the original system are

vZ 2
u=k— ——vy4, v =0,
()/+1)By

z +1)B?
p— Z(V ) yz.
yZ

(r+1)
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(i) If W= W(T), R=0.

In this case we find that

)
Il
C
I

B;

Al
E, R=0,

T
Il

whereA, B, andE are arbitrary constants. Then the solutions of the main system
are

U:k—By_l, 10=Ay21
v =0, p=E.

Case4. In this case, we can infer that batg and X9 commute withX-.
Consequently, X7, Xg + kXg] = 0. We may then writde; andE; as follows:

E; = 2t0; 4 X0y + ydy — Udy — v, + 200,,

E; = (1 - K)ydx — (1 — Kk)xdy + (L — K)vdy, — (1 — K)ua,. (5.2)
The analysis of the system (5.2) and the canonical variables (4.3) corresponding
to operatorE; has disclosed a reduction to the system as described by

1
T= E|nt, u=ut1?

£ =xt"Y2, v=Rt"?
n=yt V2 p=HX?
P = Po. (5.3)

From the last result we can rearrange the system (1.1) in the form (2.8). Now, we
work on the operatoE; as before. We introduce the canonical variables related to
operatorE; and defined by

E;T =1, E;U=0, E;Py=0,

Exf =0, E,R=0,

E,7=0, E,H=0. (5.4)
Whereupon we can calculate the new transformation variables

i=E"+n%

e
I

1t sin! <i>
(1-Kk)v1 NOYA
¢ =U?+R%
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U=op sinﬂ[% sin? (i> +U],

Vi
R=.¢ cosﬁ[% sin? (%) + Ii},
T=T,
H=H,
P = Po.

Then we obtain the same form (2.12). The transformation linking the original
system (1.1) and the system (2.12) is

F=2int

=5 nt,
g: 1 Sin_l —Xt_l

(1= KVDE+y7] Vie+yaet )
_ 1 o xt~1 ~\ .-

= B SRy S | S Sy P
R=.,¢ cosﬂ[mtl sin <mt1> + R]t :
p = Po,
p = Hx?,
7=DC+yt

6. CLASS OF SOLUTIONS
If k #£ 0, W = W(&). Then we get
[UH] =0,
UR =0,
G0 + A g, =0,

Pl +Upo =0,

where the prime’f denotes/dé.
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The solution of the last system is

U-e A-F
Po=2Z, R=A

We obtain the solution of the original system (1.1) in the form

_ 1 . xt~t -
u=./¢ Slnﬁ[m sin™t (W) + E:|t 1

v=1¢ cos\/E[

p=2,

1 o xt~1 ~
7[)(2 v sin?! (7[)(2 — t—l) + A}t 1

p = Fx?,
whereg, Z, E, A, andF are arbitrary constants.

Caseb5. In this case we find thaX, and X5 commute withX3;. Consequently,
[X3, X2 + kXs] = 0. Thus we obtain the following two infinitesimal operators
admitted by the system (1.1)

E1=3y,
Ep = Oy +tk dy + K d,.

According to the algorithm in the last case, we find that the canonical variables
related to the infinitesimal operat&s are defined by

E;T =0, E;U =0, EiRy=0,
E:£ =0, E;R=0,
Eip =0, E;H =0. (6.1)
and the infinitesimal operatd; can be written in the form
E; =0,

It can be shown by integration that the system (6.1) is reduced to the following
system:

T=t, p= Po(Tafvn),
£=X u=U(T, & n),
n=y, V= R(T1 ga Tl),

p=H(T, &n). (6.2)
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Consequently, the system (1.1) can be written in the form (2.8). Taking into con-
sideration that the operatét, and the canonical variables can be represented in
the form

E,T=0, E,U=0, E,Py=0,
Exi =1, E,R=0,
E,j=0, E,H=0, (6.3)

we can write the new transformation of variables as follows:

T=T, Po = Po(T. £, 7),
E=¢, uU=U(,é 7,
i=n—Tks, H=H®T,E7),
R = R+ke, (6.4)

and hence, we get the system in the autonomous form as in (2.12). The relation
between (6.2) and (6.4) leads to

0]
p=H. (6.5)

7. CLASS OF SOME SOLUTIONS
We can obtain special solutions such as
(i) k =0, W = W(T),
for which we have the solutions

u=Cy, v = Cy, p=c¢s, o =Cs.
(i) k # 0, W = W(3), U = 0.

Then the system (1.1) have the solutions
yC2

v=kx+-——, u= 0,
(r + Do
p= C2 p= (y+1)c2
(v +1) vee

wherec; (i = 1-4) are nonzero constants.
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Caseb. In order to achieve the reduction of the autonomous form, we merely
define

E1=3X
Ep = 9y + tk dy + K d,,

whereuponX3z and X, commute withX,.

Following this result, we observe that Egs. (2.8) and (2.12) are satisfied, but
the transformation linking the original system (1.1) to the transformed system (2.8)
is given by

=t v
Il

t, =
X — kty, =U +ky,
Y, R

p=H.

Now we takek = 0, W = W(E) or (W = W(T)), R = 0 in order to obtain partic-
ular solutions and after some calculations we have

u=ky+ A, p=0Q,
v=0, p=E.
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